A perturbation approach to large eddy simulation of wave-induced bottom boundary layer flows
نویسندگان
چکیده
We present the development, validation, and application of a numerical model for the simulation of bottom boundary layer (BL) flows induced by arbitrary finite amplitude waves. Our approach is based on coupling a ‘near-field’ local Navier–Stokes (NS) model with a ‘far-field’ inviscid flow model, which simulates large scale incident wave propagation and transformations over a complex ocean bottom, to the near-field, by solving the Euler equations, in a fully nonlinear potential flow boundary element formalism. The inviscid velocity provided by this model is applied through a (one-way) coupling to a NS solver with large eddy simulation (LES), to simulate near-field, wave-induced, turbulent bottom BL flows (using an approximate wall boundary condition by assuming the existence of a log-sublayer). Although a three-dimensional (3D) version of the model exists, applications of the wave model in the present context have been limited to two-dimensional (2D) incident wave fields (i.e. long-crested swells), while the LES of near-field waveinduced turbulent flows is fully 3D. Good agreement is obtained between the coupled model results and analytic solutions for both laminar oscillatory BL flow and the steady streaming velocities caused by a wave-induced BL, even when using open boundary conditions in the NS model. The coupled model is then used to simulate wave-induced BL flows under fully nonlinear swells, shoaling over a sloping bottom, close to the breaking point. Finally, good to reasonable agreement is obtained with results of wellcontrolled laboratory experiments for rough turbulent oscillatory BLs, for both mean and second-order turbulent statistics. Copyright ! 2011 John Wiley & Sons, Ltd.
منابع مشابه
Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملCoupling of NWT and Large-eddy Simulation for Wave-induced Sediment Transport
We present the validation and application of a numerical model for the simulation of wave-induced sediment transport. Our approach is a oneway coupling of an inviscid flow model (i.e., a Numerical Wave Tank based on potential flow theory; NWT) to a Navier-Stokes solver, to simulate near bottom wave-induced turbulent boundary layer flows. Only two-dimensional incident wave fields have been consi...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملLarge eddy simulation of sediment transport over rippled beds
Wave-induced boundary layer (BL) flows over sandy rippled bottoms are studied using a numerical model that applies a one-way coupling of a “far-field” inviscid flow model to a “near-field” large eddy simulation (LES) Navier– Stokes (NS) model. The incident inviscid velocity and pressure fields force the LES, in which near-field, wave-induced, turbulent bottom BL flows are simulated. A sediment ...
متن کاملAerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy
The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012